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We study the time evolution of two configurations of the Ising model submitted 
to heat-bath (HB), Glauber (G), and two types of Metropolis (M and /~I) 
dynamics, analyzing the damage spreading on a square lattice. We find that the 
damages produced by the dynamics G and M are greater than those resulting 
from HB and M dynamics. We also observe that, only for zero magnetic field, 
the damages of the dynamics G and M seem to be numerically equivalent. 
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1. I N T R O D U C T I O N  

Statistical models of Boolean variables (ai -- 0, 1 ), on the sites of a regular 
lattice, are used to describe the properties of a great variety of physical 
systems. By choosing appropriate expressions for the interactions between 
sites of the lattice and for the rules which determine the dynamic evolution 
of each variable, these models can describe magnetic and lattice-gas 
systems (Ising models(I)), cellular automata, (2) associated biological 
systems, (3) and many others. 

In recent decades, with the advance of modern computational 
techniques, (4) the numerical and graphical study of these systems has been 
possible, and many microscopic aspects, such as the spreading of small 
perturbations or the stability of a determined configuration, turned out to 
be of intrinsic interest. 
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The damage spreading problem consists in investigating the time 
evolution of two configurations {a A } and {e~} of the model which evolve 
by using the same dynamics and the same sequence of random numbers, 
and calculating its Hamming distance (or damage), defined by 

D(t) = 2 N  i =  1 
(1) 

For the particular case of the Ising model, the damage spreading has 
been investigated numerically by imposing different initial conditions and 
dynamical rules (heat bath, C4-6) Glauber, (7 lO) and Q2R(7)), as well as by 
employing analytical methods (11'121 which revealed the relation between the 
damage and static thermodynamic properties, such as the pair correlation 
function and the magnetization. 

In this paper, we make a comparative study between several dynamics 
(heat bath, Glauber, and Metropolis). To do this, we analyze the damage 
spreading between two configurations {cr A } and {a B} of the Ising model 
submitted to the same dynamics; this means that the site i in each of the 
two configurations at a given time t evolves at time t + 1 to a new state 
which is determined by the same functional of the local fields hA(t) and 
hf(t). Moreover, we use the same random number to update corresponding 
spins in the two configurations. 

In Section 2 we perform an analytical comparison between the heat- 
bath and Glauber dynamics; in Section 3 we analyze two types of 
Metropolis dynamics (M and lVl); in Section 4 we present the results of a 
numerical study of the damage spreading resulting from these four 
dynamics on a square lattice; finally, we conclude in Section 5. 

2. THE H E A T - B A T H  A N D  GLAUBER D Y N A M I C S  

At a given time t each site i of the Ising model has a local field hi(t) = 
Zj Ko [2~rj(t) - 1 ] + H, where Kg - JJkB T and H = h/kB T are the (dimen- 
sionless) first-neighboring coupling constant and magnetic field, respec- 
tively, and ~j ( t )=0 ,  1 is a Boolean variable. We define an associated 
probability pi(t) by 

pi(t) = [1 + e -2hi(~ -1 (2) 

The heat-bath dynamics selects, at a given time t on site i a random 
number 0 ~< Xi(t) ~< 1, and determines the new state of the variable ai at a 
time t + 1, using the rule 

{10 if Xi(t)<~pi(t) (3) 
a i ( t +  1)= if Xi(t)>pi(t) 
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If we denote by PI~L~ + 1) the probabilities that, at time t + 1, the 
variables a /  and a~ take a given value in the configurations {a A } and 
{~re}, respectively, we can see from Eq. (3) that 

P~'l(t+ 1)= min(p~(t), p~(t)) 

P~176 + 1)= rain(1 - p{(t), 1 - p~(t)) 

P)'~ + 1) = max(0, pA(t) -- p~(t)) 

P~ + 1)= max(0, p~(t)-- p~(t)) 

Consequently, the probability P~( t+ l )  that the site i has a damage 
(aA(t + 1 ) r  1)) is given by Pc(t+ 1)=P] '~  1 ) + P ~  1) and 
one has 

P~(t + 1) = P~(HB) = I p~(t) - p~(t)l (4) 

In the Glauber dynamics the probability distribution which determines 
the value of a~(t + 1) depends also on the values of ~ri(t). This dynamics is 
given by 

a i ( t+  1)= {10 ifif Xi(t)Xi(t)<~pi(t)> pi(t) when ~/ ( t )=0 (5) 

and 

O.i(t+ 1)= {01 ifif Xi(t )Xi(t)<~l-pi(t)> 1 -- pi(t) when ai(t) = 1 (6) 

To obtain the probability for damage on site i at a time t +  i, 
(Pi(t + 1)-= Pi(G)), we follow the procedure of the HB case. But in this 
case we have to analyze different possibilities: For ~r/A(t)= ~r~(t) 

Pi(G)-----]p~(t)--p~(t)l (7) 

For aA(t)r C~(t), there are two cases to examine: (a) If 1--p:(t)<~ p~(t), 

P/(G) = [-1 - p ~ ( t ) ]  + [1 - p ~ ( t ) ]  (8) 

(b) If 1 - p/( t )  >t p~(t), 

P,(G) = p~(t) + p~(t) (9) 

We notice that from Eqs. (7)-(9) it follows that at T=  oe the Glauber 
dynamics keeps the initial damage constant through the time evolution. 
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From (4) and (7)-(9) we can see that, for the same initial conditions at 
time t, 

P~(G) ~> P~(HB) (10) 

By remembering that the probability for total damage D(t) is obtained by 
summing Pi(t) over all sites of the lattice, we note that the Glauber 
dynamics enhances the damage as compared to the heat bath. Since this is 
true for an iteration from time t to time t + 1, it is true for all times. 

3. T H E  M E T R O P O L I S  D Y N A M I C S  

We have also examined the behavior of the damage spreading under 
the effect of two types of Metropolis dynamics (M and 1VI). To describe 
them, it is useful to define two associated probabilities p'i(t) and p;'(t) 
given by 

and 

p;( t ) = min(1, e 2hi(t)) (11) 

p;'(t) =min(1, e 2h,(t)) (12) 

The usual Metropolis dynamics (M) is defined by determining a~(t+ 1) 
through 

- < '  
ai(t+ 1)= if X~(t)..~pg(t) when a~(t)=0 (13) 

if X~(t)> p;(t) 

and 

f~ "< ,, 
a ~ ( t + l ) =  if X~(t)..~pi(t) when ai( t )=l  (14) 

if X~(t)> p~'(t) 

To define the other Metropolis dynamics (1VI), we choose the value of 
a~(t + 1) by the rule 

10 if Xi(t) <<. ~i(t) 
tri(t + 1)= if X~(t)>ffi(t) (15) 

where 

 i(t) = f p ; ( O  if = o 
(1 -- pT(t ) if a~(t) = 1 (16) 
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By performing a similar analysis as was made in Section 2 and 
imposing the same initial condition at time t, we can prove that the 
respective probabilities for a damage on site i at a time t + 1 satisfy the 
relation 

Pi(M) >/Pi(~r (17) 

4. A N U M E R I C A L  S T U D Y  OF D A M A G E  S P R E A D I N G  

We have not been able to find an analytic relation like Eqs. (10) and 
(17) between the probabilities Pi(M) and Pi(1VI) and the corresponding 
probabilities Pi(G) and P~(HB). 

We have, however, performed a numerical calculation of the damage 
spreading on a square lattice (L = 40) for the Ising model at temperature 
T, submitted to the different dynamics discussed previously. 

To do this, we start with a thermalized configuration (A) of the model. 
At t = 0 ,  we create another configuration (B), and we follow the time 
evolution of the configurations submitted to the same dynamics. After a 
long transient time (t~ ~ 1600 steps per site) we take the time average of the 
damage over a long time of evolution (t2 ~ 6400 steps per site), and take 
finally an average over several samples (~40);  only samples where the 
damage is not zero are considered. 

For the initial conditions o-~(0)= a~(0) except the central site, on 
which a0A(0)= 1 -  ~roS(0), that is, for initial damage D(0)=  1/N, we have 
found that: 

(a) The average damage/ ) (HB)  =/)(1VI) ~ 0 for T~> 0. 
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Fig. 1. Damage at zero magnetic field for (O)  Olauber and ( x ) Metropolis M dynamics for 
a 40 x 40 square lattice. We measured the average over 40 samples (where the damage is not 
zero), and in each of them the damage is averaged over 6400 time steps per site. Initial 
condition D(0)=  1/N. 
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(b) At zero magnetic field, the average damages /)(G) and /)(M) 
(Fig. 1) are indistinguishable, within the limits of statistical fluctuations; 
they become different from zero only for T>  To, and rise at most to the 
value 1/2. (7) For very high temperatures we expect that the damage 
decreases, because at T=  o% / ) ( G ) = / ) ( M ) = D ( 0 ) =  1/N, as can be seen 
from Eqs. (7)-(9) and from corresponding relations for the dynamics M 
(not presented here). Close to T< it is difficult to make a very precise 
statement because the large statistical fluactuations are responsible for 
numerical uncertainties. 

(c) This agreement between the dynamics G and M is not valid when 
a magnetic field is applied (Fig. 2). The field decreases the damage; in par- 
ticular, the temperature at which the damage becomes visibly different from 
zero is greater than To, and this effect becomes stronger with the field (see 
ref. 9 for a more extensive study of the effects of a magnetic field in the 
Ising model submitted to Glauber dynamics). It is impossible to say just 
from the numerical data if there is a threshold temperature above which 
the damages differ and below which they are the same or if in fact the 
damages differ over the whole range of temperatures to varying degree. 

To study the damages produced by the dynamics HB and I~I, we have 
used another initial condition, namely a~(0) = - o~(0) (i = 1,..., N), that is, 
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Fig. 2. The  same as Fig. 1, bu t  for H / J  = 1. 
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Fig. 3. The same as Fig. I, for ( � 9  heat-bath and ( x ) Metropolis I~I dynamics, with the 
initial condition D ( 0 ) =  1. Here S =  1 - D  (fraction of sites at the same state in copies A 
and B). 

D(0) = 1. In this case, the damages /)(G) and /)(M) are constant for all 
temperatures [/)(G) =/?(M) = D(0) = 1 ] and/3(19I) ~ / ) (HB)  (within the 
statistical error bars) only for T~< To. 

For high temperatures (T>Tc),  we have found that /3 (HB)~0  
and that /)(lVl) is nearly constant (~0.30) for a large interval 
(0.05 ~< Tc/T<~ 1) of temperatures. In Fig. 3, we present ,~--- 1 - / )  as func- 
tion of Tc/T for initial condition D(0)= 1. At T=  0% we expect D(HB)=  0 
and/)(lgl) =D(0)  = 1, as can be shown from Eqs. (4) and (15)-(16). Note 
in Fig. 3 the large error bars in the critical region. 

5. CONCLUSIONS 

We have investigated the behavior of damage spreading in the Ising 
model submitted to four different dynamics: heat bath, Glauber, and two 
types of Metropolis (M and l~'I). 

By analyzing the probabilities for damage to appear, we have shown 
that in the G and M dynamics, the damage spreading is enhanced as 
compared to HB and IVI dynamics, respectively. 

A two-dimensional numerical study suggests that for the damage 
spreading problem, at zero magnetic field, the dynamics G and M give the 
same result within statistical error bars. A similar agreement between the 
dynamics HB and ~ was observed (for zero magnetic field and low tem- 
peratures: T<  To). 

We remark that for the G and M dynamics, the value of a i ( t+  1) 
strongly depends on the value of ~i(t), as opposed to HB and 1VI dynamics. 
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This aspect may be crucial for the classification of other microscopic 
dynamics. 

It might be interesting to investigate the three-dimensional case, 
where, for the damage spreading in Glauber dynamics, there is numerical 
evidence (8'9~ that the special temperature at which the damage becomes 
nonzero (at zero magnetic field) is not To, but very close (~0.96Tc). In this 
case, a study investigating if the similarities and differences between the 
dynamics (G, M) and (HB, 1VI) that we have observed in two dimensions 
are still valid would be welcome. 
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